

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIAL

CS 205 DATASTRUCTURES

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

 MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically

competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated

research scientists and intellectual leaders of the country who can spread the beams of light and

happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

 Established in: 2002

 Courses offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering

Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and

Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software

Packages, Web Services, System Tools and Components as per needs and

specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing

environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Teamworkand leadership qualities.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations,

and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

COURSE OUTCOMES

SUBJECT CODE: C204

COURSE OUTCOMES

C205.1 Analyze performance of algorithms and design efficient programs to solve

problems.

C205.2 Use appropriate data structures like arrays,linked list,stacks and queues to

solve real world problems efficiently.

C205.3 Categorize different memory management techniques and the

implementations of linear datastructures.

C205.4 Represent and manipulate data using nonlinear data structures like trees and

graphs to design algorithms for various applications.

C205.5 Illustrate and understand various techniques for searching and sorting.

C205.6 Illustrate various hashing algorithms

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for

Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high

quality System Software Tools and Efficient Web Design Models with a focus on

performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

CO PO MAPPING

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C205.1 3 3 3 2 2 2

C205.2 3 3 3 2 3 2

C205.3 3 3 3 2 3 2

C205.4 3 3 3 2 2 2

C205.5 3 3 2 3 2

C205.6 3 2 3 2 2 2

C205 3 2.83 3 2 2.5 2

CO PSO MAPPING

CO’S PSO1 PSO2 PSO3

C205.1 3 3 2

C205.2 2 3 3

C205.3 3 2

C205.4 3

C205.5 3

C205.6 3

C205 2.67 3 2.33

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 Self-organizing list 144

2 Segment tree 147

3 Multigraph 149

MODULE NOTES & QUESTION

BANK

Course code Course Name L-T-P-Credits Year of
Introduction

CS205 Data Structures 3-1-0-4 2016

Pre-requisite: B101-05 Introduction to Computing and Problem Solving

Course Objectives

1. To impart a thorough understanding of linear data structures such as stacks, queues and their

applications.

2. To impart a thorough understanding of non-linear data structures such as trees, graphs and their

applications.

3. To impart familiarity with various sorting, searching and hashing techniques and their

performance comparison.

4. To impart a basic understanding of memory management.

Syllabus
Introduction to various programming methodologies, terminologies and basics of algorithms

analysis, Basic Abstract and Concrete Linear Data Structures, Non-linear Data Structures, Memory

Management, Sorting Algorithms, Searching Algorithms, Hashing.

Expected Outcome:
Students will be able to

1. compare different programming methodologies and define asymptotic notations to analyze

performance of algorithms.

2. use appropriate data structures like arrays, linked list, stacks and queues to solve real world

problems efficiently.

3. represent and manipulate data using nonlinear data structures like trees and graphs to design

algorithms for various applications.

4. illustrate and compare various techniques for searching and sorting.

5. appreciate different memory management techniques and their significance.

6. illustrate various hashing techniques.

Text Books:

1. Samanta D., Classic Data Structures, Prentice Hall India, 2/e, 2009.

2. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures: A Pseudocode Approach with C,

2/e, Cengage Learning, 2005.

References

1. Horwitz E., S. Sahni and S. Anderson, Fundamentals of Data Structures in C, University Press

(India), 2008.

2. Aho A. V., J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Pearson

Publication,1983.

3. Tremblay J. P. and P. G. Sorenson, Introduction to Data Structures with Applications, Tata

McGraw Hill, 1995.

4. Peter Brass, Advanced Data Structures, Cambridge University Press, 2008

5. Lipschuts S., Theory and Problems of Data Structures, Schaum’s Series, 1986.

6. Wirth N., Algorithms + Data Structures = Programs, Prentice Hall, 2004.

7. Hugges J. K. and J. I. Michtm, A Structured Approach to Programming, PHI, 1987.

8. Martin Barrett, Clifford Wagner, And Unix: Tools For Software Design, John Wiley, 2008

reprint.

1

COURSE PLAN

Module Contents Hours

(56)

Sem.

Exam

Marks

I

Introduction to programming methodologies – structured

approach, stepwise refinement techniques, programming style,

documentation – analysis of algorithms: frequency count,

definition of Big O notation, asymptotic analysis of simple

algorithms. Recursive and iterative algorithms.

9 15%

II

Abstract and Concrete Data Structures- Basic data structures –

vectors and arrays. Applications, Linked lists:- singly linked

list, doubly linked list, Circular linked list, operations on

linked list, linked list with header nodes, applications of linked

list: polynomials,.

9 15%

III

Applications of linked list (continued): Memory management,

memory allocation and de-allocation. First-fit, best-fit and

worst-fit allocation schemes

Implementation of Stacks and Queues using arrays and linked

list, DEQUEUE (double ended queue). Multiple Stacks and

Queues, Applications.

9 15%

IV

String: - representation of strings, concatenation, substring

searching and deletion.

Trees: - m-ary Tree, Binary Trees – level and height of the

tree, complete-binary tree representation using array, tree

traversals (Recursive and non-recursive), applications. Binary

search tree – creation, insertion and deletion and search

operations, applications.

10 15%

V

Graphs – representation of graphs, BFS and DFS (analysis not

required) applications.

Sorting techniques – Bubble sort, Selection Sort, Insertion sort,

Merge sort, Quick sort, Heaps and Heap sort. Searching

algorithms (Performance comparison expected. Detailed

analysis not required)

09 20%

VI

Linear and Binary search. (Performance comparison expected.

Detailed analysis not required)

Hash Tables – Hashing functions – Mid square, division,

folding, digit analysis, collusion resolution and Overflow

handling techniques.

10 20%

2

Question Paper Pattern:

1. There will be five parts in the question paper – A, B, C, D, E

2. Part A

a. Total marks : 12

b. Four questions each having 3 marks, uniformly covering module I and II; All

four questions have to be answered.

3. Part B

a. Total marks : 18

b. Three questions each having 9 marks, uniformly covering module I and II;

Two questions have to be answered. Each question can have a maximum of

three subparts

4. Part C

a. Total marks : 12

b. Four questions each having 3 marks, uniformly covering module III and IV;

All four questions have to be answered.

5. Part D

a. Total marks : 18

b. Three questions each having 9 marks, uniformly covering module III and IV;

Two questions have to be answered. Each question can have a maximum of

three subparts

6. Part E

a. Total Marks: 40

b. Six questions each carrying 10 marks, uniformly covering modules V and VI;

four questions have to be answered.

c. A question can have a maximum of three sub-parts.

7. There should be at least 60% analytical/numerical/design questions.

3

QUESTION BANK

MODULE I

Q:NO:

QUESTIONS

CO

KL

1 Describe complexity of an algorithm? Write worst case and

best case complexity of linear search.

CO1 K2

2 Define the terms CO1 K3

3

4

a) Frequency count. CO1 K2

b) Stepwise refinement technique. CO1 K3

5 Describe the different notations used to describe the

asymptotic running time of an algorithm.

CO1 K5

6 Explain stepwise refinement techniques. CO1 K2

7 Explain performance analysis measurements. CO1 K5

8 Define Big O notation. Show that 4n
2
=O(n

3
) CO1 K2

9 Explain the criteria that you will keep in mind while choosing

an appropriate algorithm to solve a particular problem.

CO1 K2

10 Explain different programming methodologies. CO1 K4

11 Write an algorithm to find the position of smallest number in

an array.

CO1 K2

12 Explain the criteria that you will keep in mind while choosing

an appropriate algorithm to solve a particular problem.

CO1 K2

13 Explain different programming methodologies. CO1 K5

14 Write an algorithm to find the position of smallest number in

an array.

CO1 K5

MODULE II

1 Explain Vectors and arrays. CO2 K2

2 How a linked list can be used to represent a polynomial

5x3+4x2+3x+2? Give an algorithm to perform addition of two

polynomials using linked list.

CO2 K4

3 Explain Vectors and arrays. CO2 K2

4 Write an algorithm to find the position of smallest number in

an array.

CO2 K5

4

5 Write an algorithm to delete a node at first position in doubly

linked list.
CO2 K5

6 Compare the approaches for designing an algorithm CO2 K3

7 Compare a linked list with an array. CO2 K3

8 Write short notes on Modular programming and structured

programming

CO2 K4

9 Explain the control structures used in algorithms. CO2 K2

10 Compare the approaches for designing an algorithm CO2 K3

11 Explain the difference between a circular linked list and a

singly linked list.Give the advantages and uses of a circular

linked list.

CO2 K2

12 Write an algorithm to insert a node at first position in doubly

linked list.

CO2 K5

MODULE III

1 Define stack. List the operations can be performed in a stack.

CO3 K3

2 Given five memory partitions of 100Kb, 500Kb, 200Kb, 300Kb,

600Kb (in order), how would the first-fit and best-fit algorithms

place processes of 212 Kb, 417 Kb, 112 Kb, and 426 Kb (in order)?

Which algorithm makes the most efficient use of memory?

CO3 K3

3 Write an algorithm to insert and delete an element at rear end in

DEQUEUE

CO3 K2

4 Write a program to implement multiple stacks. CO3 K3

5 List the Applications of Stack CO3 K5

6 Describe Memory management with bitmaps. CO3 K3

7 Free memory blocks of size 60K, 25K, 12K, 20K, 35K, 45K and 40K

are available in this order. Show the memory allocation for a

sequence of job requests of size 22K, 10K, 42K, and 31K (in this

order) in First Fit, Best Fit and Worst Fit allocation strategies.

CO3 K2

8 Explain how a stack can be implemented using linked list CO3 K5

9 Define circular queue. Explain how it is different from normal

queue.

CO3 K5

10 Define Stack Frames. Give example. CO3 K2

5

11 Discuss the basic features of Queue. CO3 K5

12 Write an algorithm to perform linked list implementation of Queue. CO3 K2

13 Write an algorithm to convert an infix expression to postfix. CO3 K1

14 Write an algorithm for evaluating a postfix expression and evaluate

the following postfix expression using the algorithm AB+CD/AD-

EA˄+*where A=2, B=7, C=9, D=3, E=5

CO3 K2

MODULE IV

1 Write an algorithm to perform concatenation of two strings. CO4 K2

2 List the properties of binary search tree. Write an algorithm to

search an element from a binary search tree.

CO4 K1

3 Define tree traversal. List different ways to traverse a tree. CO4 K2

4 Show the structure of the binary search tree after adding each of

the following values in that order: 10, 1, 3, 5, 15, 12, 16. What is

the height of the created binary search tree?

CO4 K3

5 Define Binary Search Tree. Develop an algorithm to add an element

into a binary search tree.

CO4 K1

6 Compare the approaches for traversing a tree. CO4 K2

7 Explain how we can initialize strings using arrays. CO4 K3

8 Write a recursive algorithm to perform preorder traversal. Explain

with example.

CO4 K3

9 Write an algorithm to insert an element in a binary search tree.

Explain with example.

CO4 K2

10 Develop an algorithm to add an element into a binary search

tree.

CO4 K5

11 What are the applications of trees? CO4 K3

MODULE V

1 Write an algorithm/ C program to perform merge sort. Given

the following list of

numbers: [21, 1, 26, 45, 29, 28, 2] find the output obtained

after each recursive call

of merge sort algorithm.

CO5 K4

6

2 Write C program/algorithm to perform linear search. Find the

time complexity for best, worst and average case for a linear

search in an array of n elements.

CO5 K2

3 Write algorithm to perform Breadth First Search.Write one

possible order of visiting the nodes of the following graph

starting at vertex A.

CO5 K3

4 Give any two representations of graph. Give algorithm for

DFS. Demonstrate DFS using suitable example.

CO5 K2

5 List the properties of binary search tree. Write an algorithm to

search an element from a binary search tree.

CO5 K3

6 Write the non recursive preorder traversal algorithm. CO5 K3

7 List the properties of binary search tree. Write an algorithm to

search an element from a

CO5 K3

MODULE VI

1 Give an algorithm to perform binary search. Using the

algorithm, search for elements 23 and 47 in the given set of

elements[12 23 27 35 39 42 50].

CO6 K3

2 What is max heap?Write an algorithm to perform heap sort.

Give example.

CO6 K3

3 Write C program/algorithm to perform selection sort. Perform

selection sort on an array [5,3,1,7,9].

CO6 K3

4 Write algorithm for (i) Insertion sort (ii) Bubble sort

[30,20,10,60,70,40]

CO6 K3

5 Define hashing. What are the properties of a good hash

function? With necessary examples explain four different

hashing techniques.

CO6 K2

6 Write an algorithm for merge sort technique. Illustrate with an

example. Give its

complexity.

CO6 K4

7 Define collision. What is linear probing? The following keys

10, 16, 11, 1, 3, 4,23 and 15

CO6 K4

7

MODULE I

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MODULE II

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

MODULE III

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

MODULE IV

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

MODULE V

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

MODULE VI

135

Linear search

Linear search is a very simple search algorithm. In this type of search, a sequential search is

made over all items one by one. Every item is checked and if a match is found then that

particular item is returned, otherwise the search continues till the end of the data collection.

Algorithm

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudocode

procedure linear_search (list, value)

 for each item in the list

 if match item == value

 return the item's location

 end if

 end for

end procedure

136

Binary search

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly, the

data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the collection. If

a match occurs, then the index of item is returned. If the middle item is greater than the item,

then the item is searched in the sub-array to the left of the middle item. Otherwise, the item is

searched for in the sub-array to the right of the middle item. This process continues on the sub-

array as well until the size of the subarray reduces to zero.

Procedure binary_search

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

137

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

 end procedure

Hashing

Hash Table is a data structure which stores data in an associative manner. In a hash table, data is stored in

an array format, where each data value has its own unique index value. Access of data becomes very fast

if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast irrespective of the

size of the data. Hash Table uses an array as a storage medium and uses hash technique to generate an

index where an element is to be inserted or is to be located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an array. We're going to

use modulo operator to get a range of key values. Consider an example of hash table of size 20, and the

following items are to be stored. Item are in the (key,value) format.

Hash Function

(1,20)

(2,70)

(42,80)

(4,25)

(12,44)

138

(14,32)

(17,11)

(13,78)

(37,98)

Sr.No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17

139

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used index

of the array. In such a case, we can search the next empty location in the array by looking into

the next cell until we find an empty cell. This technique is called linear probing.

Sr.No. Key Hash Array Index After Linear Probing, Array Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18

140

Collision Resolution Techniques:

When one or more hash values compete with a single hash table slot, collisions occur. To resolve

this, the next available empty slot is assigned to the current hash value. The most common methods

are open addressing, chaining, probabilistic hashing, perfect hashing and coalesced hashing

technique.

Let’s understand them in more detail:

a) Chaining:

This technique implements a linked list and is the most popular collision resolution techniques.

Below is an example of a chaining process.

Here, since one slot has 3 elements – {50, 85, 92}, a linked list is assigned to include the other 2

items {85, 92}. When you use the chaining technique, inserting or deleting of items with the hash

table is fairly simple and high performing. Likewise, a chain hash table inherits the pros and cons of

a linked list. Alternatively, chaining can use dynamic arrays instead of linked lists.

b) Open Addressing:

This technique depends on space usage and can be done with linear or quadratic probing techniques.

As the name says, this technique tries to find an available slot to store the record. It can be done in

one of the 3 ways –

 Linear probing – Here, the next probe interval is fixed to 1. It supports best caching but

miserably fails at clustering.

 Quadratic probing – the probe distance is calculated based on the quadratic equation. This

is considerably a better option as it balances clustering and caching.

 Double hashing – Here, the probing interval is fixed for each record by a second hashing

function. This technique has poor cache performance although it does not have any clustering

issues.

Below are some of the hashing techniques that can help in resolving collision.

141

https://www.vibrantpublishers.com/2019/11/16/linked-list-operations/
https://www.vibrantpublishers.com/2019/10/15/all-you-need-to-know-about-arrays/
https://www.vibrantpublishers.com/2019/11/11/little-known-ways-to-link-lists/

c) Probabilistic hashing:

This is memory based hashing that implements caching. When collision occurs, either the old record

is replaced by the new or the new record may be dropped. Although this scenario has a risk of losing

data, it is still preferred due to its ease of implementation and high performance.

d) Perfect hashing:

When the slots are uniquely mapped, there is very less chances of collision. However, it can be done

where there is a lot of spare memory.

e) Coalesced hashing:

This technique is a combo of open address and chaining methods. A chain of items are stored in the

table when there is a collision. The next available table space is used to store the items to prevent

collision.

142

CONTENT BEYOND SYLLABUS

143

Self-organizing list

A self-organizing list is a list that reorders its elements based on some self-organizing heuristic to

improve average access time. The aim of a self-organizing list is to improve efficiency of linear search by

moving more frequently accessed items towards the head of the list. A self-organizing list achieves near

constant time for element access in the best case. A self-organizing list uses a reorganizing algorithm to adapt

to various query distributions at runtime.

Techniques for rearranging nodes

While ordering the elements in the list, the access probabilities of the elements are not generally known in

advance. This has led to the development of various heuristics to approximate optimal behavior. The basic

heuristics used to reorder the elements in the list are:

Move to front method (MTF)

This technique moves the element which is accessed to the head of the list. This has the advantage of being

easily implemented and requiring no extra memory. This heuristic also adapts quickly to rapid changes in the

query distribution. On the other hand, this method may prioritize infrequently accessed nodes — for example, if

an uncommon node is accessed even once, it is moved to the head of the list and given maximum priority even

if it is not going to be accessed frequently in the future. These 'over rewarded' nodes destroy the optimal

ordering of the list and lead to slower access times for commonly accessed elements. Another disadvantage is

that this method may become too flexible leading to access patterns that change too rapidly. This means that

due to the very short memories of access patterns even an optimal arrangement of the list can be disturbed

immediately by accessing an infrequent node in the list.

If the 5th node is selected, it is moved to the front

144

https://en.wikipedia.org/wiki/List_(computing)
https://en.wikipedia.org/wiki/Self-organizing_heuristic
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Access_time
https://en.wikipedia.org/wiki/File:MTF_Algorithm.png

At the t-th item selection:

 if item i is selected:

 move item i to head of the list

Count method

In this technique, the number of times each node was searched for is counted i.e. every node keeps a separate

counter variable which is incremented every time it is called. The nodes are then rearranged according to

decreasing count. Thus, the nodes of highest count i.e. most frequently accessed are kept at the head of the list.

The primary advantage of this technique is that it generally is more realistic in representing the actual access

pattern. However, there is an added memory requirement, that of maintaining a counter variable for each node

in the list. Also, this technique does not adapt quickly to rapid changes in the access patterns. For example: if

the count of the head element say A is 100 and for any node after it say B is 40, then even if B becomes the

new most commonly accessed element, it must still be accessed at least (100 - 40 = 60) times before it can

become the head element and thus make the list ordering optimal.

If the 5th node in the list is searched for twice, it will be swapped with the 4th

init: count(i) = 0 for each item i

At t-th item selection:

 if item i is searched:

 count(i) = count(i) + 1

 rearrange items based on count

Transpose method

This technique involves swapping an accessed node with its predecessor. Therefore, if any node is accessed, it

is swapped with the node in front unless it is the head node, thereby increasing its priority. This algorithm is

145

https://en.wikipedia.org/wiki/File:CountAlgorithm.png

again easy to implement and space efficient and is more likely to keep frequently accessed nodes at the front of

the list. However, the transpose method is more cautious. i.e. it will take many accesses to move the element to

the head of the list. This method also does not allow for rapid response to changes in the query distributions on

the nodes in the list.

If the 5th node in the list is selected, it will be swapped with the 4th

At the t-th item selection:

 if item i is selected:

 if i is not the head of list:

 swap item i with item (i - 1)

146

https://en.wikipedia.org/wiki/File:Transpose_Algorithm.png

Segment tree

In computer science, a segment tree, also known as a statistic tree, is a tree data structure used for storing

information about intervals, or segments. It allows querying which of the stored segments contain a given

point. It is, in principle, a static structure; that is, it's a structure that cannot be modified once it's built. A

similar data structure is the interval tree.

A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment

trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of

retrieved intervals or segments.[1]

Applications of the segment tree are in the areas of computational geometry, and geographic information

systems.

The segment tree can be generalized to higher dimension spaces.

Structure description

Let S be a set of intervals, or segments. Let p1, p2, ..., pm be the list of distinct interval endpoints, sorted from

left to right. Consider the partitioning of the real line induced by those points. The regions of this partitioning

are called elementary intervals. Thus, the elementary intervals are, from left to right:

That is, the list of elementary intervals consists of open intervals between two consecutive

endpoints pi and pi+1, alternated with closed intervals consisting of a single endpoint. Single points are

treated themselves as intervals because the answer to a query is not necessarily the same at the interior

of an elementary interval and its endpoints.

Graphic example of the structure of the segment tree. This instance is built for the segments shown at the bottom.

147

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Interval_tree
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Segment_tree#cite_note-Schwarzkopf1-1
https://en.wikipedia.org/wiki/Computational_geometry
https://en.wikipedia.org/wiki/Geographic_information_systems
https://en.wikipedia.org/wiki/Geographic_information_systems
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/File:Segment_tree.svg

Given a set I of intervals, or segments, a segment tree T for I is structured as follows:

 T is a binary tree.

 Its leaves correspond to the elementary intervals induced by the endpoints in I, in an ordered way: the

leftmost leaf corresponds to the leftmost interval, and so on. The elementary interval corresponding to

a leaf v is denoted Int(v).

 The internal nodes of T correspond to intervals that are the union of elementary intervals: the interval

Int(N) corresponding to node N is the union of the intervals corresponding to the leaves of the tree

rooted at N. That implies that Int(N) is the union of the intervals of its two children.

 Each node or leaf v in T stores the interval Int(v) and a set of intervals, in some data structure. This

canonical subset of node v contains the intervals [x, x′] from I such that [x, x′] contains Int(v) and does

not contain Int(parent(v)). That is, each node in T stores the segments that span through its interval,

but do not span through the interval of its parent.

148

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Internal_node
https://en.wikipedia.org/wiki/Union_(set_theory)

Multigraph

In graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel

edges), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one

edge.

There are two distinct notions of multiple edges:

 Edges without own identity: The identity of an edge is defined solely by the two nodes it connects. In this

case, the term "multiple edges" means that the same edge can occur several times between these two

nodes.

 Edges with own identity: Edges are primitive entities just like nodes. When multiple edges connect two

nodes, these are different edges.

A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of

nodes, not just two.

Undirected multigraph (edges without own identity)[edit]

A multigraph G is an ordered pair G := (V, E) with

 V a set of vertices or nodes,

 E a multiset of unordered pairs of vertices, called edges or lines.

Undirected multigraph (edges with own identity)[edit]

A multigraph G is an ordered triple G := (V, E, r) with

 V a set of vertices or nodes,

 E a set of edges or lines,

 r : E → {{x,y} : x, y ∈ V}, assigning to each edge an unordered pair of endpoint nodes.

Some authors allow multigraphs to have loops, that is, an edge that connects a vertex to itself,[2] while others

call these pseudographs, reserving the term multigraph for the case with no loops.[3]

Directed multigraph (edges without own identity)[edit]

A multidigraph is a directed graph which is permitted to have multiple arcs, i.e., arcs with the same source

and target nodes. A multidigraph G is an ordered pair G := (V, A) with

 V a set of vertices or nodes,

149

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Multiple_edges
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Basics
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Hypergraph
https://en.wikipedia.org/w/index.php?title=Multigraph&action=edit§ion=1
https://en.wikipedia.org/wiki/Ordered_pair
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/w/index.php?title=Multigraph&action=edit§ion=2
https://en.wikipedia.org/wiki/Triple_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Loop_(graph_theory)
https://en.wikipedia.org/wiki/Multigraph#cite_note-2
https://en.wikipedia.org/wiki/Multigraph#cite_note-3
https://en.wikipedia.org/w/index.php?title=Multigraph&action=edit§ion=3
https://en.wikipedia.org/wiki/Directed_graph

 A a multiset of ordered pairs of vertices called directed edges, arcs or arrows.

A mixed multigraph G := (V, E, A) may be defined in the same way as a mixed graph.

Directed multigraph (edges with own identity)[edit]

A multidigraph or quiver G is an ordered 4-tuple G := (V, A, s, t) with

 V a set of vertices or nodes,

 A a set of edges or lines,

 , assigning to each edge its source node,

 , assigning to each edge its target node.

This notion might be used to model the possible flight connections offered by an airline. In this case the

multigraph would be a directed graph with pairs of directed parallel edges connecting cities to show that it is

possible to fly both to and from these locations.

In category theory a small category can be defined as a multidigraph (with edges having their own identity)

equipped with an associative composition law and a distinguished self-loop at each vertex serving as the left

and right identity for composition. For this reason, in category theory the term graph is standardly taken to

mean "multidigraph", and the underlying multidigraph of a category is called its underlying digraph.

Labeling[edit]

Multigraphs and multidigraphs also support the notion of graph labeling, in a similar way. However there is no

unity in terminology in this case.

The definitions of labeled multigraphs and labeled multidigraphs are similar, and we define only the latter

ones here.

Definition 1: A labeled multidigraph is a labeled graph with labeled arcs.

Formally: A labeled multidigraph G is a multigraph with labeled vertices and arcs. Formally it is an 8-

tuple where

 V is a set of vertices and A is a set of arcs.

 and are finite alphabets of the available vertex and arc labels,

150

https://en.wikipedia.org/wiki/Mixed_graph
https://en.wikipedia.org/w/index.php?title=Multigraph&action=edit§ion=4
https://en.wikipedia.org/wiki/Quiver_(mathematics)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Category_(mathematics)
https://en.wikipedia.org/w/index.php?title=Multigraph&action=edit§ion=5
https://en.wikipedia.org/wiki/Graph_labeling
https://en.wikipedia.org/wiki/Labeled_graph

 and are two maps indicating the source and target vertex of an arc,

 and are two maps describing the labeling of the vertices and arcs.

Definition 2: A labeled multidigraph is a labeled graph with multiple labeled arcs, i.e. arcs with the same end

vertices and the same arc label (note that this notion of a labeled graph is different from the notion given by the

article graph labeling).

151

https://en.wikipedia.org/wiki/Labeled_graph
https://en.wikipedia.org/wiki/Graph_labeling

